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ABSTRACT

Algorithms based on alternating optimization for nonnegative
Tucker decompositions (NTD) such as ALS, multiplicative
least squares, HALS have been confirmed effective and effi-
cient. However, those algorithms often converge very slowly.
To this end, we propose a novel algorithm for NTD using
the Levenberg-Marquardt technique with fast computation
method to construct the approximate Hessian and gradient
without building up the large-scale Jacobian. The proposed
algorithm has been verified to overwhelmingly outperform
“state-of-the-art” NTD algorithms for difficult benchmarks,
and application of face clustering.

Index Terms— nonnegativeTucker decomposition,Gauss-
Newton, Levenberg-Marquardt, low rank approximation, face
clustering

1. INTRODUCTION

Tucker decomposition with nonnegative constraints has
been found in many important applications such as pat-
tern recognition, scenes classification, EEG analysis, BCI
EEG motor imaginery [1, 2, 3, 4, 5], and can be formu-
lated as follows, “Decompose a given nonnegative data
tensor Y � RI1�I2����IN� into a set of N nonnegative factors

A�n� � �a�n�1 , a
�n�
2 , . . . , a

�n�
Rn
� � RIn�Rn� , �n � 1, 2, . . . ,N� and a

nonnegative core tensorG � RR1�R2�����RN”, that is,

Y � G �1 A�1� �2 A�2� 	 	 	 �N A�N� � G� 
A� � Ŷ, (1)

where “�n” denotes product of a tensor and a matrix along
mode-n. Most NTD algorithms minimize the cost function

D�Y, 
A�n��,G� � �Y
G� 
A��2F , (2)

via alternating optimization which often accompanies update
rules with low computational cost, but face problems of slow
convergence. The multiplicative algorithms [1, 2, 3] are based
onminimization of the squared Euclidean distance (Frobenius
norm) and the Kullback-Leibler divergence.
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All-at-once algorithms which simultaneously update all
the factors cope with such problems. For canonical polyadic
decomposition (CP), and nonnegative tensor factorization
(NTF), the damped Gauss-Newton (dGN) algorithm was
first proposed by Paatero [6]. The Gauss-Newton algorithm
can be derived from Newton’s method, and has an at most
quadratic rate of convergence. However, these methods also
face similar problem with large-scale Jacobians and large-
scale inverses of the Hessians. Recently, Tichavský and
Koldovský [7] have proposed a novel method to compute
inverse of approximate Hessian based on 3R2 � 3R2 dimen-
sional matrices for 3-D tensor factorizations. The algorithm
has been generalized and extended to arbitrary dimensional
and complex-valued or nonnegative tensors in [8, 9]. For
NTD, due to high computational cost of Kronecker products
and consumption of extremely large temporary extra-storage,
the dGN method has not yet been considered.

In this paper, we propose an all-at-once algorithm with
low complexity for NTD based on the dGN iteration. A
logarithmic barrier penalty term has been imposed on the
cost function (2) to enforce nonnegativity constraints. The
proposed algorithm is verified to overwhelmingly outperform
“state-of-the-art” NTD algorithms for difficult benchmarks.

Hereafter, we shall denote the mode-n matricized version
of a tensor Y by Y�n�. Pn is a permutation matrix: vec�Y� �
Pn vec

�
Y�n�

�
, n � 1, 2, . . . ,N. Symbol “�” denotes the Kro-

necker product,A� � A�N��A�N�1��	 	 	�A�1� andA��n ��
k�nA

�k� � A�N��	 	 	�A�n�1��A�n�1��	 	 	�A�1�. Multi-
plication of a tensor with all but one mode is defined asG��n


A� � G�1 A�1� 	 	 	 �n�1 A�n�1� �n�1 A�n�1� 	 	 	 �N A�N�.
Mode-nmultiplication of a tensorY by a vector a � RIn along
mode-n is denoted by Z � Y �̄n a � RI1�����In�1�In�1�����IN .
The contracted product of two tensors is defined as in [10, 1].

2. DAMPED GAUSS-NEWTON ALGORITHM

The proposed algorithm minimizes the cost function (2) with
a logarithmic penalty function to prevent factors A�n� and the
core tensor G reaching zeros.

D� � D�Y, 
A�n��,G� 
 α Pl�
A�n��,G� , (3)
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Pl �
N�
n�1

In�
in�1

Rn�
r�1

log�a�n�inr
� �

�
r�	r1,r2,...,rN


log�gr� , (4)

where α � 0, a�n�inr
and gr � gr1r2���rN are elements of factors

A�n� and core tensor G, respectively. The update rule derived
from (3) simultaneously updates all the factors A�n� and the
core tensor G based on the damped GN iteration [6] given by

v� v
 �H� μI��1 g, (5)

where vT �
�
vec
�
A�1�

�T
, 	 	 	 , vec

�
A�N�

�T
, vec�G�T

�
, μ � 0

is the damping parameter, and I is the identity matrix. The
gradient g and the approximate Hessian H are given by

g � JT �ŷ
 y� 
 α
�Pl
�v

� JT �ŷ
 y� 
 α v�	�1
, (6)

H � JT J
 α
�2Pl
�v2

� JT J� α diag
v�	�2
�, (7)

J �
�
J1 J2 	 	 	 JN JN�1

�
, (8)

Jn �

	
PTn
�
A��nG�n�

T � IIn
�
, n � 1, 2, . . . ,N,

A�, n � N � 1,
(9)

where ŷ � vec
�
Ŷ
�
, y � vec�Y�, and �x��	p
 denotes element-

wise power, IIn is an In � In identity matrix. The Jacobian

matrix J � R�
�
In�� �

�N
n�1 RnIn� can be directly utilized in the

learning rule (5). However, this demands high computational
cost for construction of the approximate Hessian �H� μI�
due to high computational cost of Kronecker products. In the
sequence, we present more efficient computation methods for
the learning rule (5).

2.1. Fast computation of the gradient g

From (9), for n � 1, 2, . . . ,N, we have the following result

JTn �y
 ŷ��
�
A��n TG�n� � In

�
PTn vec

�
Y
 Ŷ

�
�vec

��
Y�n� 
 Ŷ�n�

�
A��n T G�n�

�
�vec

�
�Y��n 
AT� 
G��n 
ATA�,G��n

�
, (10)

where �Y, Ŷ��n denotes contracted product between Y, Ŷ
along all their modes except mode n. Tensor products Y��n


AT� � Y�1 A�1� T 	 	 	 �n�1 A�n�1�T �n�1 A�n�1�T 	 	 	 �N

A�N� T , and G ��n 
ATA� � G �1 A�1� TA�1� 	 	 	 �n�1

A�n�1�TA�n�1� �n�1 A�n�1� TA�n�1� 	 	 	 �N A�N� TA�N� can
be calculated over a hierarchical stage of tensor-matrix mul-
tiplications. This avoids Kronecker products which are often
computationally demanding, and consume significant tempo-
rary extra-storage. For example, Kronecker products A��n

produce large-scale matrices of size



k�n Ik �



k�n Rk.
Therefore, tensor products Y ��n 
AT � and G ��n 
ATA�
are much less computationally expensive than matrix prod-
ucts Y�n� A��n T , Ŷ�n� A��n T . Moreover, we don’t need to
build up the approximation tensor Ŷ in (10).

Similarly, we have

JTN�1 �y
 ŷ� � vec
�
Y� 
AT� 
G� 
ATA�

�
. (11)

From (10) and (11), we established a fast computation for the
gradient g without computing the Jacobian J.

2.2. Construction of approximate Hessian H

This section will present a low computational cost to build up
the approximate Hessian given in (7). For simplicity, we con-
struct the approximate Hessian H � JTJ without the regular-
ization term which can be expressed as concatenation of �N�
1�2 block matrices H�n,m� � H�m,n�T ,m, n � 1, 2, . . . ,N � 1
as

H �

�
�


H�1,1� 	 	 	 H�1,N�1�

...
. . .

...

H�N�1,1� 	 	 	 H�N�1,N�1�

�
�� . (12)

2.2.1. Off-Diagonal Block Matrices H�n,m��n � m)

Without loss of generality and because of symmetryH�n,m� �
H�m,n�, n � m, we consider submatrices H�n,m�, for 1 � n �
m � N. From (9), for n � 1, 2, . . . ,N, we have

JTn � PRn,In
�
IIn � G�n� A

��nT
�
PIn ,Kn Pn

� PRn,In
�
IIn � G�n�

� �
IIn � A��nT

�
PIn,Kn Pn

� PRn,In
�
IIn � G�n�

� �
PIn,Rn�1:N � IR1:n�1

�
�

N�
k�n�1

A�k�T � IIn �
n�1�
k�1

A�k�T
�
, (13)

where Kn �



k�n Ik, Rn�1:N �

N

k�n�1 Rk, R1:n�1 �
n�1
k�1 Rk, IJ is an J � J identity matrix. Permutation ma-

trices PRn,In , PIn ,Kn and PIn,Rn�1:N are defined as: vec�XI�J� �
PI,J vec

�
XTI�J

�
. Let Q�n� denote the matrix product in (13)

Q�n� �
�
IIn �G�n�

� �
PIn ,Rn�1:N � IR1:n�1

�
�

�
��

G̃�n1�
�n�
...

G̃�nIn �
�n�

�
��� , (14)

where G̃�nin �
�n�

�in � 1, 2, . . . , In, n � 1, 2, . . . ,N� are the mode-

nmatricized versions of �N�1�-dimensional tensors G̃
�nin � of

size R1�R2�	 	 	�Rn� In�Rn�1�	 	 	�RN whose subtensor
obtained by fixing the �n � 1�-th index to in is G , and other
entries are zeros. That is the mode-�n � 1� matricization of

G̃
�nin � is a matrix whose in-th row is vec�G�

T and others are
zeros

G̃�nin�
�n�1�

�

�
�
 0�in�1��

�N
k�1 Rk

vec�G�T

0�In�in��
�N

k�1 Rk

�
�� . (15)
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For each pair of indices �n,m�, we define a set of �N � 1�
matrices B�k� given by

B�k� �

��������
�������

A�k�TA�k�, 1 � k � n,

A�n� T , k � n� 1,

A�k�1� TA�k�1�, n� 2 � k � m,

A�m�, k � m� 1,

A�k�1� TA�k�1�, m� 2 � k � N � 1.

Note that for simplicity, indices n,m are omitted in matrices
B�k�. We have the following expression for 1 � n � m � N

G̃�nin �
�n�

��
N�

k�m�1

A�k�TA�k�
�
�A�m�T �

�
m�1�
k�n�1

A�k�TA�k�
�
�

A�n� �

�
n�1�
k�1

A�k�TA�k�
��

G̃�mim�T
�m�

� G̃�nin �
�n�

�
�B���n

�T
G̃�mim �T
�m�

�

�
G̃�

�

� n
n�1
m�1

� �B� �m�1 A�m� �n�1 A�n�T
�
�n�

G̃�mim�T
�m�

�
�
W�n,m��̄m�1 a

�m�T
im:

�n�1 a
�n�T
in :

�
�n�
GT
�m�, (16)

where W�n,m� � Ĝ �
�

� n
n�1
m�1

� 
B�, and Ĝ is an augmented

version of the tensor G of size R1 � 	 	 	 � Rn � 1 � Rn�1 �
	 	 	 � RN . From (9), (13), submatricesH�n,m� � JTn Jm, n � m
can be expressed as follows

PTRn,In H
�n,m� PRm,Im � Q

�n� 
B��n T�Q�m�T

�
�
G̃�nin�
�n�


B��n T� G̃�mim� T
�m�

�
in�1,2,...,In
im�1,2,...,Im

�
�
�W�n,m��̄m�1a

�m�T
im:

�n�1 a
�n� T
in:
,G��n,�m

�
in�1,2,...,In
im�1,2,...,Im

, (17)

where �Y,G��n,�m denotes the contracted product along all
modes exceptmode-n for tensorY, and exceptmode-m for the
tensorG. Similarly, we straighforwardly express submatrices
H�n,N�1� � JTn JN�1 as follows

H�n,N�1� � PRn,In

�
����������


�
Z�n� �n�1 a

�n�T
1:

�
�n�

...�
Z�n� �n�1 a

�n�T
in:

�
�n�

...�
Z�n� �n�1 a

�n�T
In:

�
�n�

�
�����������
, (18)

where Z�n� � Ĝ�
�� n,

n�1�

ATA�.

2.2.2. Diagonal Block Matrices H�n,n�

A diagonal block matrix H�n,n� � JTn Jn can be expressed by

H�n,n� �

	
�G��n 
ATA�,G��n � IIn , n � N � 1,


AT A�� , n � N � 1.
(19)

From (17)-(19), the approximate Hessian H � JTJ is
fully expressed by products of tensors and contracted prod-
ucts. We note that matrices A�n�TA�n� of size Rn � Rn are
much smaller than matrices A�n� due to Rn � In. This con-
struction avoids computing large-scale Jacobian J, and Kro-
necker products of large-scale matrices such as A��n or A�.

Finally, from Sections (2.1) and (2.2) we completely by-
pass computation of the Jacobian and establish a much faster
computation for the approximate Hessian and the gradient
than their conventional approach given in (7) and (6). More-
over, the proposed method does not demand significant tem-
porary extra-storage. Selection of the regularization parame-
ter α and the damping parameter μ can employ methods pre-
sented in [8, 9].

3. SIMULATIONS

3.1. Synthetic data

We compared performance of the algorithm LM� with the
multiplicative LS (mLS) [2], HALS [4, 11]. Synthetic ten-
sors Y with In � 100, N � 3, 4 were composed from uni-
formly distributed random factors comprising R � 5 or R � 3
components. In some experiments, factors were forced to be
sparse with density of 30%. Algorithmswere initialized using
the HOSVD algorithm [12], and stopped when difference be-

tween consecutive relative errors ε � �Y�Ŷ�F
�Y�F

� 10�8, or the
maximum number of iterations was exceeded. Comparison of
performances averaged over 100 runs is given in Table 1. Al-
though the HALS algorithm achieved better performance than
the mLS algorithm especially for sparse tensors, both theses
algorithms demanded much more iterations than that of the
LM� to explain the tensor with an acceptable fitness. Their
relative errors for dense tensor decompositions were greater
than 10�3, and slightly better for sparse tensors. Whereas,
the proposed algorithm achieved almost perfect performances
with ε � 10�5 after few iterations, even for large-scale tensor
(In � 100,N � 4). In Fig. 1, we compared the relative errors
as functions of iterations for one run of decomposition of a
100� 100� 100 dimensional tensor. After few iterations to
seek the damping parameter μ and the regularization param-
eter α, the LM� quickly explained the data tensor in � 69
iterations. The mLS and HALS algorithms could not explain
the benchmarks even if they were run for 5000 iterations.

3.2. Clustering of the ORL face database

This example considers the ORL face database [13] for clus-
tering. The dataset consists of 400 faces for 40 subjects but
we selected only 100 faces from the first 10 subjects. We
constructed Gabor feature tensors of 8 orientations at 4 scales
which were then down-sampled to form 16 � 16 � 8 � 4 di-
mensional tensor Y�k�, k � 1, 2, . . . , 100 for each face. That
means we have a 5-D tensorY. Nonnegative features were ex-
tracted for faces from Gabor tensors using NTD [5]. The data
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Table 1. Performance comparison for various algorithms for
decomposition of synthetic tensors.

LS HALS LM�
In � 50, N � 3,R � 5

Error (1.62 � 0.18) 10�2 (1.15 � 0.12) 10�2 �1.52� 6.39� 10�7

No. iters 500 500 47
In � 100, N � 3,R � 5

Error (1.76 � 0.15) 10�2 (1.28 � 0.12) 10�2 �7.27� 10.26� 10�9

No. iters 500 500 69
In � 100, N � 3,R � 5, sparse factors

Error (1.14 � 0.64) 10�2 (1.28 � 10.99) 10�4 �8.80� 20.09� 10�6

No. iters 5000 2571 66
In � 100, N � 4,R � 3

Error (2.04 � 0.23) 10�2 ( 2.01 � 0.83) 10�3 �1.10� 2.31� 10�8

No. iters 5000 5000 55
In � 100, N � 4,R � 3, sparse factors

Error (3.29 � 2.72) 10�3 (8.41 � 45.26) 10�6 �3.34� 14.62� 10�6

No. iters 5000 2185 55

Table 2. Comparison of accuracies (Acc) and normalizedmu-
tual information (NMI) for various algorithms for Example
3.2.
Algorithm 36 features 72 features

Acc (%) NMI Error No. iters Acc (%) NMI Error No. iters
mLS 91 89.65 0.4768 300 98 97.09 0.4768 300
HALS 92 91.45 0.4745 300 96.00 94.76 0.4369 300
LM� 92 91.45 0.4745 68 99 98.54 0.4368 86

tensorY was decomposed along the first 4 modes to give core
tensor’s size of 3�3�2�2�100. Hence, a face had 36 fea-
tures compressed from 8192 Gabor features. Finally, the data
was clustered using the K-means algorithm. The accuracy
(%) and normalized mutual information (NMI) for algorithms
are given in Table 2. The LM� algorithm achieved 92% ac-
curacy. Increasing number of features to 72 � 3� 3� 4� 2,
our algorithm achieved 99% accuracy. For both cases, the
obtained accuracies for the mLS algorithm were 91% and
98%, respectively. For the same dataset, the highest accuracy
obtained by NTF algorithms were 94% [9]. The presented
results also confirm the superiority of features extracted by
NTD over features by NTF.

4. CONCLUSIONS

A robust dGN algorithm with fast method to construct the ap-
proximate Hessian and gradient has been proposed for NTD.
Instead of computing the large-scale Jacobian, then building
up the gradient and approximate Hessian, we establish di-
rect expressions of gradient and approximate Hessian which
avoid Kronecker products and extra-storage. The LM� algo-
rithm has been verified and outperforms themultiplicative and
(H)ALS algorithms. The proposed algorithm without the log-
arithmic barrier penalty term in the cost function also works
well for general Tucker decomposition. Moreover, fast in-
verse of the approximate Hessian, similar to those in [7, 8, 9,
14] might be possible. However, due to limited space, analy-
sis of such case has been omitted.
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Fig. 1. Convergence of NTD algorithms for decomposition of
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